Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 44(1): e2200369, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35836097

RESUMEN

Many sophisticated chiral materials are found in living organisms, giving specific functions and required complexity. Owing to the remarkable optical properties of chiral materials, they have drawn significant attention for the development of synthetic materials to give optical activities for appealing applications. In contrast to a top-down approach, the bottom-up approach from self-assembled systems with chiral host-achiral guest and achiral guest-chiral host for induced circular dichroism and induced circularly polarized luminescence has greatly emerged because of its cost-effective advantage with easy fabrication for mesoscale assembly. Self-assembled hierarchical textures with chiral sense indeed give significant amplification of the dissymmetry factors of absorption and luminescence (gabs and glum ), resulting from the formation of well-ordered superstructures and phases with the building of chromophores and luminophores. By taking advantage of the microphase separation of block copolymers via self-assembly, a variety of well-defined chiral nanostructures can be formed as tertiary superstructures that can be further extended to quaternary phases in bulk or thin film. In this article, a conceptual perspective is presented to utilize the self-assembly of chiral block copolymers with chiral communications, giving quaternary phases with well-ordered textures at the nanoscale for significant enhancement of dissymmetry factors.


Asunto(s)
Luminiscencia , Nanoestructuras , Dicroismo Circular , Polímeros
2.
Acc Chem Res ; 55(15): 2033-2042, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35849801

RESUMEN

Through the morphological evolution to give highly optimized complex architectures at different length scales, fine-tuned textures for specific functions in living organisms can be achieved in nature such as a bone core with very complicated porous architecture to attain a significant structural efficiency attributed to delicately structured ligaments and density gradients. As inspired by nature, materials with periodic network structures (i.e., well-defined porous textures) in the nanoscale are appealing and promising for innovative properties. Biomimicking from nature, organic and/or inorganic nanonetworks can be synthetically fabricated, giving broadness and effectiveness when tuning the desired properties. Metamaterials are materials whose effective properties do not result from the bulk behavior of the constituent materials but rather mainly from their deliberate structuring. The performances of fabricating metamaterials will depend on the control of size, shape, order, and orientation of the forming textures. One of the appealing textures for the deliberate structuring is network architecture. Network materials possess self-supporting frameworks, open-cell character, high porosity, and large specific surface area, giving specific functions and complexity for diverse applications. As demonstrated by recent studies, exceptional mechanical performances such as negative thermal expansion, negative Poisson's ratio, and twisting under uniaxial forces can be achieved by the effect of the deliberate structuring with nanonetwork textures. In contrast to a top-down approach, a bottom-up approach is cost-effective, and also it can overcome the size limitation to reach nanoscale fabrication. It can be foreseen that network metamaterials with a feature size of tens of nanometers (referred as nanonetwork metamaterials) may provide new comprehension of the structure and property relationships for various materials. The self-assembly of block copolymers (BCPs) is one of the most used methods to build up well-ordered nanostructured phases from a bottom-up approach with precise control of size, shape, and orientation in the thin films for realistic applications. In this account, we summarize recent advancements in the fabrication of nanohybrids and nanoporous materials with well-ordered nanonetwork textures even with controlled helicity by combining block copolymer self-assembly and templated syntheses for mechanical and optical applications with superior properties beyond nature as metamaterials as well as chiral metamaterials with new properties for chiroptic applications such as chiral plasmonics, beam splitter, and negative refraction. The description of the fundamental facets of a nonconventional structure-property relationship with the characters of metamaterials and the state-of-the-art methodologies to fabricate nanonetworks using block copolymer self-assembly will stimulate research activities for the development of nanonetwork metamaterials with exceptional individual and multifunctional properties for futuristic devices.


Asunto(s)
Nanoestructuras , Polímeros , Nanoestructuras/química , Polímeros/química , Porosidad
3.
RSC Adv ; 10(11): 6592-6602, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35495995

RESUMEN

Catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles were fabricated using a combination of sol-gel chemistry and coaxial electrospinning technique. We report the fabrication of catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles (AuNPs) using a combination of sol-gel chemistry and coaxial electrospinning technique. The coaxial electrospinning involved the use of a mixture of poly(vinyl pyrrolidone) (PVP) and titania sol as the shell forming component, whereas a mixture of poly(4-vinyl pyridine) (P4VP) and pre-synthesized AuNPs constituted the core forming component. The core-shell nanofibers were calcined stepwise up to 600 °C which resulted in decomposition and removal of the organic constituents of the nanofibers. This led to the formation of porous and hollow titania nanofibers, where the catalytic AuNPs were embedded in the inner wall of the titania shell. The catalytic activity of the prepared Au@TiO2 porous nanofibers was investigated using a model reaction of catalytic reduction of 4-nitrophenol and Congo red dye in the presence of NaBH4. The Au@TiO2 porous and hollow nanofibers exhibited excellent catalytic activity and recyclability, and the morphology of the nanofibers remained intact after repeated usage. The presented approach could be a promising route for immobilizing various nanosized catalysts in hollow titania supports for the design of stable catalytic systems where the added photocatalytic activity of titania could further be of significance.

4.
Int J Mol Sci ; 15(11): 21080-9, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25405738

RESUMEN

Novel boric ester-type molten salt was prepared using 1-(2-hydroxyethyl)-3-methylimidazolium chloride as a key starting material. After an ion exchange reaction of 1-(2-hydroxyethyl)-3-methylimidazolium chloride with lithium (bis-(trifluoromethanesulfonyl) imide) (LiNTf2), the resulting 1-(2-hydroxyethyl)-3-methylimidazolium NTf2 was reacted with 9-borabicyclo[3.3.1]nonane (9-BBN) to give the desired boric ester-type molten salt in a moderate yield. The structure of the boric ester-type molten salt was supported by 1H-, 13C-, 11B- and 19F-NMR spectra. In the presence of two different kinds of lithium salts, the matrices showed an ionic conductivity in the range of 1.1 × 10⁻4-1.6 × 10⁻5 S cm⁻¹ at 51 °C. This was higher than other organoboron molten salts ever reported.


Asunto(s)
Compuestos de Boro/química , Sales (Química)/química , Compuestos de Boro/síntesis química , Ésteres/síntesis química , Ésteres/química , Iones/química , Litio/química , Espectroscopía de Resonancia Magnética , Sales (Química)/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...